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Abstract 

This paper presents a comprehensive examination of the enablement and integration of Natural 
Language Processing (NLP) and Random Forest Classifier (RFC) techniques to streamline log file 
diagnostics within a pivotal software development project. This novel integration has significantly 
improved the accuracy of classifying errors and informational queries in log files, marking a considerable 
advancement over traditional diagnostic methods. Our approach leverages advanced NLP to efficiently 
process and interpret the extensive, complex data within log files. In tandem with the robust classification 
capabilities of RFC, our method identifies and categorizes failure signatures with remarkable precision. 

The effectiveness of our methodology and its potential to substantially reduce manual intervention in 
system diagnostics are underscored by these results. This innovation not only advances the field of 
software diagnostics into a new era characterized by automation and precision but also establishes a 
strong foundation for future technological progress. As technology evolves, the insights from this research 
have the potential to transform the maintenance and reliability of complex computing systems, indicating 
a significant paradigm shift in the practice of technological diagnostics. 
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1 Introduction 

Platform development projects are validated for thousands of use cases by various system integration 
and validation techniques. Product validation is a continuous phenomenon with multiple test cycles 
executed over a period till the time Platform Validation (PV) milestone is granted. Each of the tests 
executed as part of these validation cycles generates validation logs which vary in types and sizes.  
Test types could be basic acceptance test, sanity test, stability, functional, Tape In, pre-integration and 
many others. These tests generate various log files, including .log, .csv, .err and each log has varied 
format. Even .log files generated for different tests have different formats. More importantly, these test 
cycles generate hundreds of logs weekly. Hence this is the classic case of Big Data 3 V - volume, 
velocity, and variety. Refer Figure1 (3V of Big Data). 
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Figure1 

2 Problem Description 

Due to the 3V challenge of the validation logs data, the identification of real errors vs the noise elements 
in data is manual process and sometimes assisted with Regex operations. However, these Regex 
operations come with maintenance and become a nuisance for any new engineers in team. Also, there is 
always a possibility of missing errors due to human oversight. As reasoned above, overall efforts of 
filtering the noise from logs data and identifying real errors requires significant effort and time. This 
eventually leads to unproductive efforts and high triage or debug time which spans to ~1hrs to 2hrs per 
logs generated for a given test. 

 

3 Solution 

Quality and validation engineers worked together to develop a machine learning solution capable of 
predicting errors within validation logs and filtering out noise. The team identified that natural language 
processing (NLP) combined with classification modeling was the optimal approach. After creating and 
validating several models, the team successfully developed a proof of concept for the most effective 
machine learning model. This model automates the process of noise filtration and error triage in the logs.  
The image below illustrates two distinct workflows. The upper portion depicts the existing process, which 
involves a combination of manual effort and semi-automated tasks to identify error signatures. In contrast, 
the lower portion of the image represents the proposed integration of a machine learning model, designed 
to achieve a more efficient and effective end-to-end error detection system. Refer Figure2 below: 

 
Figure2 
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4 Machine Learning: End to End Deployment Flow 

 
Figure3 

5 Data Handling 

The meticulous process of enhancing the triage tool for log file analysis started with a structured 
approach to data management. This process is pivotal for ensuring the foundation of our analysis is 
accurate, dependable, and tailored for optimizing diagnostics efficiency: 

5.1 Data Collection 

Logs dataset comprises essential elements such as log filenames, descriptors of queries, 
classifications of queries as errors or informational, alongside the substantive text of log signatures. 
“Table 1” provides a clear and organized overview of the dataset for easy reference and analysis.  

File Name  Query Name  Query 
Type  

Signature Text  

XXX.log  ABC  error  XML oneof Check:  

Table1 

5.2 Guaranteeing Uniqueness of Data 

To maintain the fidelity and integrity of our analysis, a crucial early step involves the removal of any 
replicative data entries. This ensures that each piece of data analyzed is unique, avoiding skewed 
results from duplicated information.  

5.3 Streamlining Data Relevance:   

The dataset undergoes a rigorous refinement process, where non-essential information is 
methodically stripped away. By isolating and removing columns that do not directly contribute to the 
failure diagnosis process, we focus our analysis on the most impactful and pertinent data elements.  

 

5.4 Strategic Data Balancing:   

Strategic Data Balancing plays a crucial role in addressing the inherent imbalance between 'error' and 
'info' query types within our dataset.   
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Before Balancing Data:  
INFO ERROR  

1488793 192565  

  
To create a dataset conducive to unbiased machine learning model training, we implement a down 
sampling strategy. This involves equalizing the quantity of 'error' and 'info' categories by reducing the 
instances of the predominant class.   
Mathematically, if the majority class has (Np) instances and the minority class has (Nl) instances, we 
randomly select (Nl) instances from the majority class to achieve a balanced dataset of (2Nl) 
instances. This harmonized class representation is essential for preventing model bias and ensuring 
that our analysis is both accurate and reflective of true log file dynamics, augmenting the triage tool's 
diagnostic capabilities.  

 

       After Balancing Data:  
INFO  ERROR  

192565  192565  

 
Also, the StratifiedKFold method is employed with n_splits=5, ensuring that our data is divided into 5 
distinct folds or splits for cross-validation, while maintaining an equal proportion of each class within 
every fold. StratifiedKFold, essential for handling imbalanced data, allows for a more reliable 
estimation of model performance by ensuring that each fold is a good representative of the overall 
class distribution. This technique is pivotal for reducing bias and variance in our model evaluation, 
supporting the authenticity of our performance metrics.  
Stratified K-Fold cross-validation was used to validate the model's performance, defined by the 
formula:  

  
Where (TP), (TN), (FP), and (FN) represent true positive, true negative, false positive, and false 
negative predictions, respectively. 

 

6 Feature Engineering and preprocessing 

Given the nature of log files, typically unstructured and cluttered with irrelevant information, preprocessing 
is a crucial step. The goal here is to convert raw text into a numerical format that machine learning 
models can understand. To achieve this, we first employ Regular Expressions (Regex) to meticulously 
extract significant patterns and entries from the log files. Regex allows us to sift through large datasets 
and pinpoint relevant information by matching specific patterns. 

6.1  Our preprocessing pipeline involves the following key steps:  

6.1.1 Tokenization and Stop Word Removal:   

Tokenization involved breaking down the cleaned log entries into individual words or tokens. 
Following tokenization, we removed stop words - common words such as "the," "is," and "in," 
which typically do not contribute to the distinctiveness of log messages. This step was crucial for 
reducing the dimensionality of our data and improving the focus on keywords that could be 
indicative of system failures or errors. We utilize the get_stop_words('english') method to achieve 
this.  

6.1.2 Lowercasing:   

Converts all text to lowercase to ensure consistency, as machine learning models are case  
sensitive.  
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6.1.3 Lemmatization:   

Each token then underwent lemmatization, a process of reducing words to their base or dictionary 
form. For instance, "running" becomes "run". We employed the getLemma function for this 
purpose, focusing on nouns as primary entities in log data. This standardization of vocabulary 
significantly contributes to the efficiency of the subsequent feature extraction phase, which 
involved transforming our processed textual data into a numerical format.   
For a word (w) in our text (T), if (w) is not a stop word and its lemmatized form is (lemma(w)), our 
filtered text (T') can be represented as:  

T′ = lemma(w)|w∈T  ∧  w∉stopwords  

6.2 Feature Extraction:  

The TF-IDF (Term Frequency-Inverse Document Frequency) vectorizer was employed here, 
converting the corpus of preprocessed logs into a matrix of TF-IDF features. The TF-IDF metric 
represents the importance of a word within a document relative to a given corpus, balancing the 
frequency of the word in the document against its commonness across all documents. 
Mathematically, TF-IDF for a term (t) in a document (d) within a document set (D) is calculated 
as:  

TF−IDF(t,d)=TF(t,d)×IDF(t,D)  
where (TF(t, d)) is the Term Frequency, representing the number of times term (t) appears in 
document (d)., and (IDF (t, D) is the Inverse Document Frequency, with (N) being the total 
number of documents, and (df(t)) denoting the number of documents containing term (t), 
computed as:   

 

 
with (N) being the total number of documents in the corpus (D) and (|d∈D:t∈d|) representing the 
number of documents where the term (t) appears.  
The logarithmic scaling of (IDF) diminishes the weight of terms that occur very frequently across 
the corpus, hence prioritizing unique terms in each document. Incorporating n-gram ranges (1,2) 
enables the vectorizer to not only consider individual terms (1-gram) but also pairs of consecutive 
terms (bi-grams), enriching the feature set and potentially capturing more contextual information 
useful for model training.  

 

7 Model Training 

7.1 Training and Testing by Data Splitting:  

We precisely tailored our dataset for the Random Forest Classifier, implementing a stratified split to 
ensure a representative mix of 'error' and 'info' query types in both training (80%) and testing (20%) 
sets. This approach, facilitated by the train_test_split function with a set random_state, guards 
against bias and upholds the integrity of our log file classification model’s evaluation, significantly 
contributing to the enhancement of the triage tool's diagnostic accuracy and overall reliability. This 
meticulous preparation underpins our dedication to refining automated diagnostics. 

7.2 Model Training Enhanced with Machine Learning:  

Following the data preparation phase, we focus on the objective optimization and validation of our 
model's performance. This stage is characterized by a well-structured approach that leverages the 
RandomForestClassifier, integrated with GridSearchCV for hyperparameter tuning, and 
StratifiedKFold for robust cross-validation. This methodology is aimed at refining our predictive 



 

Excerpt from PNSQC Proceedings  PNSQC.ORG 

Copies may not be made or distributed for commercial use  Page 6 

model for enhanced accuracy in distinguishing between 'error' and 'info' query types in log files. 
Here is a breakdown of this meticulous process:  

7.2.1 Random Forest Classifier:  

A RandomForestClassifier instance (RF_GS_CV) is initialized as our base model. RFC is an 
ensemble learning method for classification that operates by constructing many decision trees at 
training time and outputting the mode of the classes (classification) of the individual trees. Random 
forests correct for decision trees' habit of overfitting to their training set, offering a more generalized 
model.  

The decision tree, the building block of RFC, works by selecting the best feature among a random 
subset of features at each node to split the data. This randomness, coupled with bagging (Bootstrap 
Aggregating) - where multiple models are trained on different subsets of the training data and then 
averaged - ensures that the bias-variance trade-off is balanced. Mathematically, the Gini impurity, a 
measure used by the decision trees in the RFC to decide how to split the data, is given by: 

 

where (pi) is the frequency of class (i) in the dataset.  
 

7.2.2 Hyperparameter Optimization with GridSearchCV:  

To fine-tune our model, we employ GridSearchCV, applying it to the RandomForestClassifier with a 
set of predefined hyperparameters - 'n_estimators' (the number of trees in the forest) and 'max_depth' 
(the maximum depth of each tree). This exhaustive search over specified parameter values is 
conducted across k-fold cross-validation to ensure the model's generalizability. Mathematically, the 
optimization aims to maximize a performance metric (F), defined over the hyperparameter space (H), 
as:   

 
Where ( ĥ ) represents the optimal hyperparameter setting.  
The performance of the model was evaluated based on accuracy, and the best parameters were 
chosen based on cross-validation scores, ensuring robust generalization to unseen data.  

7.2.3 Model Training:  

With the optimal hyperparameters determined, we train the RandomForestClassifier on the training 
subset transformed via TF-IDF vectorization, striving for a model that accurately discerns between 
'error' and 'info' queries based on the textual content of log files.  

 

8 Model Selection 

The evaluation employed a suite of performance metrics—accuracy, precision, recall, and the F1-Score—
each reflecting a distinct aspect of the model's classification capabilities:  

 

• Accuracy: Serving as a primary measure, accuracy quantifies the overall correctness of the 
model's predictions across the test dataset, offering an aggregate perspective on its 
performance.  

• Precision: This metric assesses the model's reliability in identifying true positive instances among 
all positive predictions, crucial for scenarios where the cost of false positives is high.  
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• Recall (Sensitivity): Recall measures the model's capacity to detect all actual positive instances, 
paramount in understanding its effectiveness in identifying relevant classifications without 
omission.  

• F1-Score: The F1-Score amalgamates precision and recall into a single metric, providing a 
balanced view of the model's precision and recall capabilities by computing their harmonic 
mean.   

 
We conducted a thorough evaluation of various diagnostic models, including logistic regression, naive 
Bayes classifier, support vector machine, random forest, and gradient boosting, and we also optimized 
their hyperparameters.  
Based on the performance metrics, we narrowed our final selection to two candidates: Random Forest 
and Support Vector Machine.  
Finally, we compared the performance of RandomForestClassifier (RFC) with that of Support Vector 
Machine (SVM) to identify the most effective tool for classifying 'error' and 'info' query types in log files. 
The analysis incorporated a detailed examination of predictive accuracy, particularly focusing on the 
incidence of false positives and false negatives, alongside metrics of precision and recall, to offer a 
granular understanding of each model's efficacy.  

 

• SVM Performance Analysis:   
o The SVM model yielded a false positive and negative rate of approximately 0.5%, 

indicating a scenario where 0.5% of cases might be misclassified as 'info' when they are 
'error', and vice versa. This rate, while low, underscores a critical challenge in 
distinguishing between the two query types with high reliability using SVM.  

• RFC Performance Insights:   
o In contrast, the RFC model exhibited a significantly lower false-negative rate for 'error' 

predictions at 0.05%, albeit with a false positive rate for 'info' at around 3%. This 
suggests that while RFC is markedly adept at identifying 'error' queries with high 
coverage, it also presents a tendency to misclassify some 'info' queries as 'errors'.  

• Precision and Recall Metrics:   
o Precision, evaluating the correctness of predictions for a given label, and recall, 

assessing the model's proficiency in accurately identifying correct labels out of the total 
population in the given data, served as pivotal metrics. The RFC model showed 
commendable precision in its predictions, coupled with a superior recall rate, highlighting 
its ability to effectively identify 'error' classifications from the dataset.  

 

Following this comparative analysis, Figure3, highlights the performance metrics of various models 
evaluated during the process with focus on SVM and RFC models, providing a visual summary of their 
predictive efficacy, error handling, and overall capacity to accurately classify log file queries.   
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Table2 

To complement these quantitative assessments, a Confusion Matrix was constructed, offering a visually 
detailed account of the model's predictive outcomes. The confusion matrix delineates the distribution of 
true positives, true negatives, false positives, and false negatives, providing nuanced insight into the 
model's classification behavior. This visualization aids in identifying patterns or biases in the predictions, 
further contextualizing the numerical metrics. Following this, Figures 4 and 5 are presented, highlighting 
the confusion matrices for RFC and SVM models, respectively. These matrices serve as crucial tools for 
visually interpreting the performance of each model in classifying 'error' and 'info' queries in log files, 
allowing for a deeper understanding of their predictive accuracy and areas for improvement.  

 

  
Table3: Random Forest Confusion Matrix with Stratification Strategy  

 

  
Table4: SVM Confusion Matrix with Down sampling Strategy  

 

This array of performance metrics, coupled with the confusion matrix, furnishes a comprehensive 
understanding of the RFC model's predictive prowess.   

 

The comparative analysis of RFC with traditional Support Vector Machine (SVM) models demonstrated 
the former's superior performance in minimizing false-negative rates and enhancing precision in error 
query identification. This underscores our methodology's effectiveness and its potential to significantly 
reduce manual intervention in system diagnostics.   

9 Integration and Deployment  

The integration phase fuses the trained RandomForestClassifier (RFC) model with Triage tool, granting it 
the capability to autonomously identify and categorize failure signatures in log files through advanced 
NLP techniques and RFC’s classification power. This harmonization significantly boosts Triage tool's 
automated log analysis efficiency, aligning with project goals to elevate system diagnostics' precision and 
reliability.   

 

• The selection and implementation of the RFC-based model in Triage tool highlighted substantial 
improvements in the tool's performance. One of the major outcomes was the ability to create 
more accurate and granular failure signatures without explicit pre-programming. This 
advancement meant a decrease in the need for manual interventions during the failure analysis 
phase. Additionally, the RFC model improved the predictive accuracy of Triage tool, allowing it to 
adapt to new and unseen failure modes.  

• Implemented Standalone Model and infra for testing Model in Millions of files from every project.  

• Analyzed log in Host Patch Update logs and identified many occurrences of Patch upload failure.  
 

By presenting these results, we contribute novel insights into automatic log file analysis, underscoring the 
viability of employing advanced machine learning algorithms and NLP techniques for refined diagnostic 
endeavors. The clarity and precision of these results underscore our commitment to advancing the field 
and offer a significant contribution to the technological community's understanding of automated system 
diagnostics.  
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After rigorous training and meticulous hyperparameter tuning, the embedded Random Forest Classifier 
(RFC) model has enhanced Triage tool's ability to process raw textual data. It now efficiently extracts 
actionable insights, driving maintenance strategies to new levels of effectiveness.  
This pivotal step underscores our commitment to leveraging innovative technology for enhancing software 
diagnostics and ensures a broad impact on system reliability and maintenance methodologies across the 
technological landscape. The figure below illustrates the integration of the machine learning model with 
the validation log analyzer within the final environment.  

 

Figure4 

10 Conclusion  

We embarked on a comprehensive assessment of integrating Natural Language Processing (NLP) and 
RandomForestClassifier (RFC) techniques for streamlining log file diagnostics. This integration, the first of 
its kind, notably enhanced the accuracy of classifying errors and information queries in log files, signifying 
a substantial step forward from traditional diagnostics methods. Our approach utilized advanced NLP to 
efficiently process and interpret the vast and complex data contained within log files, coupled with the 
classification power of RFC, to identify and categorize failure signatures with unprecedented accuracy 
and efficiency.   

 

As outlined in the problem description section, the analysis of each log file generated by a given test 
typically requires 1 to 2 person-hours, depending on the size of the log. With an average of 10,000 log 
files being generated weekly, we can conservatively estimate a potential time saving of up to 10,000 to 
20,000 person-hours per week. This estimate assumes that the implementation of our solution would 
eliminate the need for manual analysis, thereby saving a significant amount of effort.  
In conclusion, this machine learning project asserts the significant potential of marrying NLP with RFC 
within the domain of log file analysis. It not only propels the field of software diagnostics into a new era 
marked by automation and precision but also sets a robust foundation for future advancements. As 
technology continues to advance, the insights from this study bear the potential to revolutionize the 
maintenance and reliability of complex computing systems, signaling a radical shift in how technological 
diagnostics are approached and implemented.  
 


