

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 1

Shifting Other Than Left or Right
Jon Bach

jbtestpilot@gmail.com

Abstract
You've likely heard of "Shift-Left" -- the DevOps principle of moving testing closer to Development with

programmatic approaches like Build/Code/Plan/Test pipelines.

The complementary DevOps dimension is "Shift-Right" -- moving testing closer to Production with

programmatic approaches like Release/Deploy/Operate/Monitor.

In my work as a Program Manager who works with Developers, Testers, Business Intelligence, Legal,

Operations, Compliance, Localization, and every adjacency you can think of, I’ve noticed a third and

fourth dimension we don’t talk enough about -- Shifting IN to the details and OUT to the big picture --

getting perspective so you know how best to marshal your Left and Right resources.

Biography
Jon's been in Tech since 1995, starting in Customer Support for a commercial real estate dial-up service.
He’s currently a Senior Program Manager Quality Manager and consultant for a small software
development studio called ProphetTown. His longest role was at eBay where he worked for 13 years a
Quality Director and Program Manager. He's also been a full-time employee at Microsoft during Y2K, and
served on contracts at HP, Adobe, AT&T, WebMD, Getty Images, Alaska Airlines, McGraw-Hill, and
more. He’s the co-inventor (with his brother James) of Session-Based Test Management – a way to
manage and measure Rapid Software Testing. Jon loves turning rhetoric and philosophy about software
development into action (baking half-baked ideas), and frequently posts on LinkedIn about software
quality and program management.

Copyright Jon Bach, August 5, 2024

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 2

Introduction

I frame this paper with a model of thinking about how to examine aspects of a software risks and
problems from what I learned in over 13 years at eBay as a Quality Program Manager and customer
advocate

If shifting left is being able to find problems earlier, and shifting right is about learning from Production, it's
time there was a paper about how we can see not just the Left or the Right, but zoom In and OUT to see
the significance of one tree or the beauty of the WHOLE forest.

The Problem

Diagram courtesy Dynatrace website (article by Saif Gunja)

This is a classic representation that’s a model of Development and Operations in terms of moving testing
closer to Development with programmatic approaches

This seems like Waterfall Development with a twist – literally. This diagram keeps coming back to the
MIDDLE – both shifts might be good, but their captions might benefit from some context and perspective.

“Shift Left” might really mean: “We do our best to get it right before it goes out”

“Shift Right” might really mean: “We do our best to learn from what happens in the field so that we can do

better in the next iteration.”

Diagram courtesy Dynatrace website (article by Saif Gunja)

https://www.dynatrace.com/news/blog/what-is-devops/
https://www.dynatrace.com/news/blog/what-is-devops/

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 3

LEFT is the DevOps principle of moving testing closer to Development with programmatic approaches like
Build/Code/Plan/Test pipelines.

It’s meant to be linear, with time going from left to right, from CAUSES to CONSEQUENCES, but there’s
also a spectrum between IDEATION and a COMPETED PRODUCT, from which things like decisions are
meant to be moved closer to IDEATION to prevent the risk of costly rearchitecture and redesign.

The ultimate LEFT is looking at every line of code as it’s built and seeing quick ways to prevent problems
before they happen. This could mean unit tests and code reviews, advanced IDE syntax or pattern-
checking features, continuous integration on every pull request, checkin, and merge, or recent claims that
AI can find, assess, suggest, and create fixes to problems that haven’t happened yet.

Now, let’s take its complement – shifting RIGHT – the DevOps principle of moving testing closer to
Production with programmatic approaches like Release/Deploy/Operate/Monitor.

Diagram courtesy Dynatrace website (article by Saif Gunja)

It’s also meant to be linear, with time still going from left to right, from CAUSES to CONSEQUENCES,
also against the backdrop of IDEATION and a COMPETED PRODUCT, but where decisions are meant to
be moved AWAY from Ideation because there’s not enough data or context to make a call.

The ultimate shift RIGHT is Procrastination. Procrastination isn’t bad. Delaying a decision or an action
gives people a chance to learn, acquire better equipment and facilities, better tech, and less *guessing*.
Working on a Minimum Viable Product or a 1.0 where you expect early adopters from your prototyping
and incremental development is really shift RIGHT. You see how people like it first. Sure, if you could
remove the cause of a bad event, that would be great, but there’s a paradox: we want to go as far back
as we can to make good things happen, but we don’t want to make any decisions until we know how it all
turns out! If you don’t have a time machine, you will have to ITERATE to adjust your INVESTMENT.

https://www.dynatrace.com/news/blog/what-is-devops/

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 4

Alaska Airlines Flight 1282 (January 5, 2024)
Let’s anchor these concepts in a recent example – Alaska Airlines Flight 1282.

There’s an excellent report up on the National Transportation Safety Board website
(https://www.ntsb.gov/investigations/Pages/DCA24MA063.aspx)

“On January 5, 2024, about 1714 Pacific standard time, Alaska Airlines flight 1282, a Boeing 737-9,
N704AL, returned to Portland International Airport (PDX), Portland, Oregon, after the left mid exit door
(MED) plug departed the airplane leading to a rapid decompression. The airplane landed on runway 28L
at PDX without further incident, and all occupants (2 flight crewmembers, 4 cabin crewmembers, and 171
passengers) deplaned at the gate. Seven passengers and one flight attendant received minor injuries.”

The report has the following elements:

• Crew Experience and History of Flight

• Recorders: Cockpit Voice Recorder and Flight Data Recorder

• Operator and Airplane Information

• Mid Exit Door Plug Description

• Cabin Pressurization/Cabin Description

• Materials and Structure Examination

• Manufacturing Records/Human Performance

• Safety Actions

Working on the LEFT (pushing decisions closer to ideas and causes)

A lot of this is evidence of working toward the LEFT. Considerations like the relationship to the assembly
line, time pressure, psychological safety, having information to do the right thing; knowing there's a
problem and being able to solve it and WANTING to solve it.

Working on the RIGHT (learning from the consequences of incidents in the completed product)

In other words, are we as software professionals on the lookout for signs and symptoms of problems in
the field? (For example, the NTSB looked at maintenance logs indicating a pressure controller light had
illuminated on three previous flights.)

In software development, shifting right could mean going from creating FUNCTIONS to verifying
SOLUTIONS. You can’t have functionality without thinking “Does anyone NEED this?”

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 5

IN vs OUT

Now let’s look at two other important dimensions that few people talk about as a representation of
something other than LEFT or RIGHT.

In versus Out is akin to using a microscope or a telescope.

One context-centering question we could ask is:

• Who's looking? What problem are they trying to solve?

For the NTSB investigator, it’s these:

• What kinds of things have to go into my report?

• What are the politics and legal implications?

• What are the forces that are guiding the report?

• What's relevant and what’s irrelevant?

Shifting IN (using a microscope) is akin to the following:

• Focusing on the fine details

• Making a “Situation Room”

• Writing the “play-by-play” on how it happened

• Seeing what the “bolts” (literally, in this case) look like

It’s also taking time to understand how the work happened:

• How do people read checklists?

• What are (or were) they told?

• Are they given too much work?

• What are they told vs. what do they actually do?

• Understanding the staff’s daily experience

Shifting OUT (using a telescope) is akin to the following:

• Addressing general policy changes that affect people's behaviors,

You can go out in different directions, for example -- toward Strategy or

toward Big Picture, which includes timelines, system components, etc.

Shifting out could also be about delegation or outsourcing -- letting go of the problem so you specifically
and purposefully become an outsider to get critical distance. You might deliberately find value in shifting
your involvement.

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 6

Applications of these dimensions
Shifting In or OUT is a complementary dimension to LEFT and RIGHT.

You can look at the dimensional focus like the movements of a joystick.

When I shifted careers from a QA Manager to a Program Manager after about 20 years, my perspective
went from paying attention to one project to many. I went from finding BUGS in a PRODUCT to finding
RISKS in multiple PROJECTS that were needed to comprise an enterprise PROGRAM. A program is a
collection of deliverables from different teams who need a coordinator of their individual solutions to make
one big solution -- much like individual features comprise a whole product.

Let’s look at three major overlapping domains in Software Development:

When I was at eBay working on the Customer Survey platform, I needed to deal with many teams to
either get the big picture of patterns of failure that were reported, or drill into specific bugs customers
were reporting. I shifted Left, RIGHT, IN and OUT and it occurred to me I was in a new role that I’d never
heard of in 30 years of software development, so I came up with a name for it:

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 7

What I think I have here in this set of perspectives is a critical thinking tool on how to approach a
project.

Between Engineering and Business, I worked to consider and coordinate Tradeoffs – for example,
Engineering can only do X, even though the business wants X, Y, and Z.

Between Business and Customers, I worked to collect and assess Needs – for example, Business
needed more items on the site, and Customers wanted an easier time to list them.

Between Customers and Engineering, I worked to see what Support needed to look like – for example,
Engineering needed more specificity about Production problems to get to the root cause more quickly,
which worked well to support customers in rapid and clearly communicated bug fixes.

If we anchor these three sets of relationship back to something like an NTSB report, we see all 4 ways of
coping with a problem:

 1) IN: You get all the details of the problem and steep yourself in it. You become the expert, the
ultimate insider, to get really close to it.

 2) OUT: Think about its context and the dynamics that underlie it. Think about large flows of
energy and flows through the system, as well as the players involved.

 3) LEFT: Look at it in terms of its beginnings. Where did this problem come from? What was it like
right when the prob started?

 4) RIGHT: What did the problem eventually become? What did it manifest as?

At any time on any project we have to choose a frame of reference. We need to decide what’s the object
we’re studying? For example, there’s a perspective that a person in charge of QA at Boeing has AFTER
the January event happened. They know what they know from this report and then they ask “Now what?”
Is that person trying to go left / right / out / in, or is it the NTSB the people who are trying to write a report
and it’s the person in CHARGE of that team who needs to go left / right / out / in.

When I was a Director of Program Management at eBay on the customer survey platform team, my point-
of-view was usually like the senior leaders at Boeing who read the NTSB report

But even then, there are opportunities to pivot – or, like a camera, to pan or zoom.

1) Pan LEFT -- how was this pattern of bugs created? Was there a recent release which had an

infrastructure hiccup during the rollout? What is the relationship of a team rolling to Production

and the Operations personnel? Was there time pressure? When someone did the wrong thing to

cause a rollout problem, did they not know the process, or did they know but were overwhelmed.

2) Pan RIGHT -- if aspects of the release were screwed up, how could we know? Are we on the

lookout (monitoring and alerting, for example) for signs and symptoms of stuff going wrong in the

field? Do we hear about every problem, or do we fix things in silos one at a time and don’t see

patterns, perhaps even in other similar releases that day?

Excerpt from PNSQC Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 8

3) Zoom IN – it’s all about the details in exactly how things happened. It’s the play-by-play, the

timelines of events. It’s about seeing the code or the ramp parameters, the server stats,

understanding procedure and how people read and follow it. It’s about what they are told or the

fact that they might have been given too much work; what they were told to do vs. what they

actually did. It’s about understanding the daily experiences of the people involved.

4) Zoom OUT – this could be about corporate policy or changes that affect people's behaviors. You

can go out in different directions -- toward strategy or the big picture; toward large-scale timelines,

or the components of systems and how they interoperate. Shifting OUT is also about the meat-

cognitive plan of what kinds of things have to go into an incident report. Maybe there are politics

or legal implications. What are the forces that are guiding the report? What's irrelevant and

relevant? What absolutely HAS to go not the report vs. what would I like to go in the report?

Maybe it even involves coordinating or considering a whole panel of experts to qualify the report.

Summary
This year’s PNSQC theme (“The Future is Now”), could mean that this Customer Advocacy and
Response Engineering role I served at eBay is the future of how Quality gets assessed – an
appropriate combination and teamwork of Testing perspective and Program Management
perspective, aided by not only appropriate shifts either to the LEFT or the RIGHT, but knowing
also when to use a telescope or microscope to shift IN or OUT.

References
Tech Beacon. “Why software development needs shift not left or right” February 2019. Michael
Giacometti. https://techbeacon.com/app-dev-testing/why-software-development-needs-shift-not-left-or-
right

National Transportation Safety Board. “Alaska Airlines Flight 1282 Investigative Hearing”
https://www.ntsb.gov/news/events/Pages/Alaska-Airlines-1282-Inv-Hearing.aspx

National Transportation Safety Board. “In-Flight Mid Exit Door Plug
Separation”https://www.ntsb.gov/investigations/Pages/DCA24MA063.aspx

Dynatrace. “Shift left vs shift right: A DevOps mystery solved.” May 2024. Saif Gunja
https://www.dynatrace.com/news/blog/what-is-shift-left-and-what-is-shift-right/

Dynatrace. “What is DevOps? Unpacking the purpose and importance of an IT cultural revolution”
February 2023. Saif Gunja https://www.dynatrace.com/news/blog/what-is-devops/

Also credit to James Bach for deep conversations and for helping me develop out the parameters of the
idea. (Satisfice, Inc.: April 2024)

https://techbeacon.com/app-dev-testing/why-software-development-needs-shift-not-left-or-right
https://techbeacon.com/app-dev-testing/why-software-development-needs-shift-not-left-or-right
https://www.ntsb.gov/news/events/Pages/Alaska-Airlines-1282-Inv-Hearing.aspx
https://www.ntsb.gov/investigations/Pages/DCA24MA063.aspx
https://www.dynatrace.com/news/blog/what-is-shift-left-and-what-is-shift-right/
https://www.dynatrace.com/news/blog/what-is-devops/

