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Abstract 
Deep Learning Language Models (DLLMs), particularly those based on Generative Pre-trained 
Transformers (GPT), have significantly advanced the field of natural language processing. As these 
models become more integrated into practical applications, they expose new security vulnerabilities and 
increase the attack surface for enterprises.  Understanding and addressing these vulnerabilities is 
essential for ensuring the reliability and confidence in these systems. 

This paper examines the vulnerabilities associated with both federated and non-federated training 
methods, including data poisoning, model update manipulation. Additionally, we discuss the need for 
robust detection and mitigation strategies to address these risks, ensuring the safe and secure 
deployment of AI systems in real-world environments. 
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1 Introduction 
To discuss the training  vulnerabilities in a Deep Learning Language Model (DLLM), it's important to 
understand the text processing pipeline and training process. The pipeline includes three main 
components for data processing which are the Input, the Transformer, and the Output stages. These 3 
three stages represent the “model” or the brain of the system. The model can be adjusted or tuned to a 
specific purpose by the approach and the data utilized in the training . 

The training approach is also influenced by the purpose of the Large Language Model (LLM) and the 
needs of the users, for example a system designed to provide general use by the public will be much 
different than a system shared by multiple companies that are collaborating to create an industry specific 
model. To satisfy these needs designers may deploy federated and non-federated training configurations. 
Each of these configurations has its strengths and weaknesses relative to security and privacy. 
Depending on the training approach taken the systems may be more vulnerable to data manipulation 
while others are vulnerable to model manipulation. 

This paper will first outline the basic workings of a model, training phases and then the training 
configurations before we highlight a few specific attack types based on their training data or corpus and 
model refinement.  

1.1 Understanding the Processing Pipeline 
This section outlines the primary stages of the processing pipeline at a high-level: Input Processing, the 
Transformer Stage, and Output Processing. These elements together make up a  model that can accept 
user input and convert it to machine readable format. This information is then processed utilizing a neural 
network capable of keeping all the content in context. Once processed it is converted back to text that is 
output to the user.  

Input Processing: The first step involves cleaning and preparing raw text data. This includes removing 
irrelevant characters, normalizing, and converting the text into a numerical format through a process 
called tokenization. The tokenized data is then further prepared for the Transformer by padding the 
tokens and masking irrelevant parts of the data. These preprocessing steps are crucial for ensuring that 
the data is in a format that allows the transformer to interpret then predict the proper response.  

Transformer Stage: At the core of models like ChatGPT is the Transformer stage. The transformer 
concept was a breakthrough in the evolution of LLMs. The best way to quickly describe the transformer 
stage is through an analogy.  

Imagine reading a novel. Each word, sentence, and paragraph provides more details about the plot.  As 
you read and better understand the context you instinctively focus on key phrases and details, connecting 
them to earlier parts of the story to understand the plot as it develops. At the end of each chapter, you 
pause to reflect on the plot, piecing together the information and anticipating what lies ahead.  

Traditional language models, like Recurrent Neural Networks (RNNs), read and present text word by 
word, similar to word prompts being suggested when you are writing a text message. This sequential 
processing can remember and connect information from earlier parts of the text message.  

Transformers, on the other hand, take a more holistic approach. The transformer sees an entire sentence 
and keeps it in context to the paragraph, chapter, and book. It uses an "attention mechanism" to weigh 
the importance of each word in relation to all others, allowing it to capture long-range dependencies and 
understand the context of each word more fully. This helps the Transformer generate more coherent and 
contextually relevant text, making it a powerful tool for language tasks like translation, summarization, and 
even creative writing. 
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Output Processing: The final stage involves converting the model’s numerical outputs back into human-
readable text. This stage is critical for ensuring the generated output is presented in contextually accurate  
sentences.  

By understanding these stages, we can better identify where and how DLLMs are vulnerable to attacks, 
setting the stage for the subsequent discussion on specific adversarial threats and mitigation strategies. 

1.2 Training Phases and Configurations 
Training a large language model (LLM) like ChatGPT involves several key phases, beginning with data 
preparation and followed by pre-training, fine-tuning, and finally Reinforcement Learning from Human 
Feedback (RLHF), see table below. Outlining these phases at a high level will help the reader to 
understand how the data curated and condition before using it to train the LLM. This data is specifically 
curated for each stage of the training. The refined data is necessary as the models’ capabilities increase 
throughout the process. Currently the training of a generative LLM is both an art and science because of 
our current understanding of the technology. Achieving the right balance between providing the best data 
to a model in manner that ensures the best outcome at a reasonable price is challenging. When balanced 
properly, bias, hallucinations, security and privacy can be managed at a level acceptable to the 
designers.   

Data Preparation: The first phase involves collecting and preparing the data for training. This includes 
gathering large datasets from sources like the internet, cleaning the data by removing irrelevant or 
erroneous information, and processing it into a format suitable for training. Tasks such as tokenization, 
normalization, and data splitting are performed during this phase. Proper data preparation is essential for 
training on high-quality data, directly impacting the model’s performance.  

Table: Training Phases for Medical Public Query 

Training Phase Data Sets Result 
Pre-Training Broad Dataset (Wikipedia, books, etc.) Basic Linguistics 
Fine Tuning Focused dataset (medical journals, etc.) Fine-tuned knowledge 
Reinforcement Learning Human Feedback (Doctors, Nurses 

approvals) 
Practical knowledge 

 

Pre-Training: After data preparation, the model undergoes pre-training using self-supervised learning. 
During this phase, the model is trained on vast amounts of text data to learn grammar, facts, and 
reasoning by predicting the next word in a sentence. While pre-training is crucial for building the model’s 
foundational knowledge, it is susceptible to attacks that can manipulate the learning process, such as 
model poisoning. 

Fine-Tuning: Following pre-training, the model enters the fine-tuning stage, a form of supervised 
learning. Here, the model is trained on a specific, curated dataset with human-labeled examples, aligning 
it with desired behaviors and tasks. Fine-tuning allows the model to specialize in particular domains or 
tasks, enhancing its accuracy and relevance. However, this phase is also at risk of fine-tuning attacks, 
where an adversary could introduce biases or malicious behaviors into the model by manipulating the 
fine-tuning data. 

Reinforcement Learning from Human Feedback (RLHF): The final phase involves refining the model’s 
responses using human feedback. Humans rank the model’s outputs, and these rankings are used to 
fine-tune the model further. RLHF is crucial for aligning the model’s responses with human preferences, 
but it also introduces risks if the feedback process is compromised. 
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2 Training Configurations: Non-Federated, Federated, and 
Decentralized 

As mentioned earlier in this paper different training configurations are employed based on the intended 
purpose of the LLM. For example, a company may provide a generative LLM as a service to the general 
public like ChatGPT while other organizations may want to partner to create a robust common model for 
their specific  industry. These two use cases have different requirements for privacy, and control that may 
be satisfied using a different training configuration. The most common configurations are non-federated, 
federated that is centralized and a decentralized or in peer-to- peer configuration. 

Non-Federated (Local) Training: In this traditional approach, the data and model are centralized 
providing maximum control. While this method simplifies data management and processing, it also makes 
the system more vulnerable to traditional data breaches and model inversion or the reverse engineering 
of the training data through output of queries. 

Federated (Centralized) Learning: Federated learning offers a more privacy-preserving alternative, see 
diagram below. In this configuration, data remains on the local devices (clients), and only model updates, 
such as gradients are sent to the central server. In machine learning, parameters are the internal settings 
of a model, such as weights and biases, that are fine-tuned during training, while gradients are the 
calculated values that guide how these parameters should be adjusted to minimize the error and improve 
the model's performance. 

Updating the central server with only updates reduces the risk of data breaches by keeping the data 
decentralized and theoretically more protected. However, it introduces new challenges, such as model 
update poisoning, where malicious changes are made during model updates; Byzantine attacks, where 
some participants in the system act maliciously; and gradient leakage, which occurs when sensitive 
information is unintentionally revealed during the process of combining data from different sources. As 
Kairouz et al. (2019) highlight, federated learning introduces a delicate balance between privacy and 
model robustness, necessitating ongoing research to address these challenges effectively. 

Diagram: Federated Configuration 
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Decentralized Learning: A more advanced approach is decentralized or peer-to-peer learning, see 
diagram below. In this setup, there is no central server; instead, clients (or nodes) communicate directly 
with each other to share model updates and collaboratively build a global model through consensus. This 
fully decentralized configuration enhances privacy and reduces the risks associated with a single point of 
failure. However, it also presents unique challenges in maintaining the integrity of the training process. As 
discussed by Kairouz et al. (2019), decentralized federated learning is particularly susceptible to 
Byzantine attacks, where malicious clients may attempt to disrupt the learning process by sending false 
or misleading updates. The absence of a central authority complicates the detection and mitigation of 
such attacks, making robust strategies essential for the secure deployment of AI systems. 

Diagram: Decentralized Configuration 
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 The table below summarizes the strength and weakness of each model for simplicity. 

Table: Training Configuration Strengths and Weaknesses 

System Type Strengths Weaknesses 

Non-Federated 
(Centralized) 

High efficiency and performance due to 
centralized computation and data access.  

Easier to implement and manage 
compared to distributed systems. 

Can leverage powerful centralized 
resources for complex tasks. 

Single point of failure: Vulnerable to system 
outages or attacks on the central server. 

Privacy concerns: Data is collected and stored 
in a central location, increasing the risk of data 
breaches and privacy violations. 

Data ownership and control: Users have 
limited control over their data, which is stored 
and managed by the central entity. 

Federated Enhanced privacy: Data remains on local 
devices, reducing the risk of data 
breaches and privacy violations. 

Improved efficiency for distributed data: 
Leverages local computational resources, 
reducing communication overhead. 

Scalability: Can handle large numbers of 
devices and data sources effectively. 

Communication overhead: Requires frequent 
communication between the central server and 
local devices, which can be a bottleneck.  

Heterogeneity challenges: Different devices 
might have varying computational capabilities 
and data distributions, affecting model training 
and performance. 

Potential for bias: Local models can be biased 
towards their local data, affecting the overall 
model's fairness and generalizability. 

Decentralized No single point of failure: Increased 
resilience to system outages and attacks 
due to distributed architecture.  

Enhanced privacy and data ownership: 
Data remains entirely under the control of 
individual users or nodes. 

Increased trust and transparency: 
Eliminates the need for a central authority, 
promoting trust and transparency among 
participants. 

Communication and coordination challenges: 
Requires efficient communication and 
coordination mechanisms between nodes, 
which can be complex to implement. 

Slower convergence: Reaching consensus and 
training models might be slower compared to 
centralized systems. 

Security risks: Vulnerable to attacks targeting 
individual nodes or communication channels. 

 

2.1 Targeted Training Attacks 
The training phase lays the groundwork for an LLM's capabilities. Any weaknesses introduced during this 
stage can have significant consequences, impacting the model's performance, reliability, and potential for 
misuse.  

The training process for an LLM is complex and requires massive datasets utilized as source information 
for multiple training phases each having multiple iterations for tuning. This creates a long complex chain 
of events that allows many points for malicious  attacks.  

Additionally, the growing popularity of federated and distributed learning with many different entities each 
having security limitations in their enterprises introduces further vulnerabilities. The training phase 
vulnerabilities can be segmented into two broad categories: data and model poisoning.  

Data Poisoning: This type of attack involves the deliberate introduction of malicious or corrupted data 
into the training set. The goal is to manipulate the model’s learning process, leading to biased, inaccurate, 
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or even harmful predictions. Data poisoning is especially prevalent in scenarios where training data is 
sourced from untrusted or crowdsourced locations, making it easier for adversaries to introduce 
compromised data without detection. 

Model Poisoning: In contrast to data poisoning, model poisoning involves tampering with the model itself 
during the training process. Attackers may manipulate the model’s parameters, gradients, or updates, 
particularly in federated or decentralized learning environments. This can lead to the model developing 
vulnerabilities, biases, or even backdoors that can be exploited later. Model poisoning is insidious 
because it directly alters the model's behavior, potentially going unnoticed until the model is deployed. 

As Zhang et al. (2020) highlight in their survey on adversarial attacks in natural language processing, 
these types of attacks are not only pervasive but also varied in their approach and impact. Understanding 
the range of adversarial strategies is crucial for developing defenses that can protect against these 
threats. 

Together, these attacks pose severe risks to the integrity and trustworthiness of machine learning 
models. This is particularly concerning in applications where accuracy and reliability are crucial, such as 
in healthcare, finance, or autonomous systems.  

 

2.2 Data Poisoning 
Data poisoning is a type of adversarial attack where  an adversary intentionally introduces corrupted or 
malicious data into the training dataset with the objective of manipulating the model’s learning process. 
This can lead to the model making incorrect predictions, introducing biases, or becoming more vulnerable 
to subsequent attacks. As illustrated in the table below, various forms of data poisoning attacks differ in 
their ease of execution, detection, and impact. For this paper we’ll utilize Stealth Poisoning to 
characterize a data manipulation attack.  

Table: Characteristics of Targeted Data  Attacks 

 

2.3 Stealth Poisoning: 
Stealth poisoning involves subtly introducing malicious data into the training set, allowing attackers to 
influence the learning process. This type of attack is designed to add insignificant data to a dataset that 
blends in seamlessly with the legitimate training data. Cleaning and data validation are important; 
however, some amount of noise is desirable to make the model  more robust. When deployed in 
production the model will inevitably  encounter data and learning to manage the noise is a desirable 
feature. Datasets that are not sufficiently noisy may allow the model to memorize the dataset causing 
overfitting. Overfitting can lead to inaccurate predictions when the model isn’t sufficiently trained to 
manage the noisy nature of real-world conditions.   

Attack Name Ease of 
Execution 
(Internal) 

Ease of 
Execution 
(External) 

Detection 
Difficulty 

Impact Most 
Susceptible 

Configuration 
Label Flipping Easiest Easiest Low Low to 

Medium 
Centralized 

Stealth Poisoning Easy Moderate Very High Medium All 

Targeted 
Poisoning 

Moderate Hard Low to 
Moderate 

High All 

Optimization-
Based Poisoning 

Hard Hardest Low to 
Moderate 

High All 
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The goal of the stealth attack is to cause the model to make incorrect predictions, introduce biases, or 
become more vulnerable to subsequent exploitation. This type of attack is especially common in 
scenarios where training data is sourced from untrusted locations. 

Example: 
An internal or external attacker has access to the training data for a credit scoring model. The attacker 
introduces data that falsely indicate high credit scores for individuals who would typically be considered 
high-risk. As a result, the model could be manipulated to approve loans for high-risk individuals, leading 
to financial losses. 

 

2.4 Detection and Mitigation 
Detecting stealth poisoning requires rigorous data validation and anomaly detection techniques. Stealth 
poisoning attacks may evade basic checks and depending on the confidence in the source data, 
advanced anomaly detection may be warranted. Even the most sophisticated techniques are not without 
their challenges for example, patterns in the data may be incorrectly flagged as malicious causing false 
positives. Advanced techniques are also costly, time-consuming and resource intensive. Organization 
with a high-risk tolerance may accept the risk with the expectation that the fixes can be applied later if and 
when inaccuracies are identified in production.   

Inaccurate predictions and unexpected behavior of the model in production may be an indication that the 
dataset was intentionally corrupted. To mitigate this issue outlier-resistant algorithms can be deployed to 
improve the model’s ability to manage noise. This approach to refining the model in this manner is also 
costly and erodes the confidence of the users. 

Another technique to improve the robustness of the model is to train it using adversarial scenarios. This 
approach intentionally exposes the model to subtle changes in the data. By training the model to detect 
unusual data it can flag the data for further analysis. Again, these techniques are costly and depending on 
the organization’s budget or risk tolerance they may be excluded.   

Together, these detection and mitigation strategies form a more sophisticated and layered approach to 
defending against data poisoning attack. The treatments help to preserve the reliability and security of the 
model during the training phase however they are just a few of the many tools needed to guard against 
attackers. Inevitable attackers will improve or develop new methods and more cost and time will be 
needed to manage the new threats to source data.  

 

2.5 Most Common Model-Targeted Attacks 
Model Update Poisoning is a type of adversarial attack that also targets the model training process. 
These attacks are more prevalent in distributed or federated learning environments because the model is 
intended to be common. Creating a common model  requires multiple parties to contribute to the 
refinement of the model. The parties will need to move the model updates from one entity to another as 
it’s being updated. These attacks can be targeted towards the global model in the central server or the 
models at the client nodes. The adversary looks to manipulate specific components of the model such as 
gradients or model parameters.  

The attacker’s goal is to corrupt the shared or global model by introducing malicious changes during the 
update process. The table below, outlines a number of model-targeted attacks that vary in their ease of 
execution, detection, and impact across different configurations. For instance, fine-tuning attacks are the 
easiest to execute and have a medium to high impact across all configurations, while Byzantine attacks, 
which are harder to detect, pose significant risks in federated and decentralized systems. 
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Table: Characteristics of Model-Targeted Attacks 

 

 

Fine-Tuning Poisoning: 
Fine-tuning attacks occur during the fine-tuning phase of the training process; this attack adjusts and 
refine the model using the  smaller client dataset. In this phase, an attacker can introduce malicious 
behaviors, biases, or vulnerabilities into the model by manipulating the data. 

For example, an attacker might subtly alter the fine-tuning dataset to alter the model sufficiently to cause 
the model to produce skewed or harmful outputs in specific scenarios. Alternatively, the attacker could 
embed specific triggers during fine-tuning that cause the model to behave maliciously when those triggers 
are encountered in real-world use. 

Fine-tuning attacks are particularly dangerous because they can be relatively easy to execute, especially 
in environments where the fine-tuning data is not closely monitored. Additionally, these attacks can be 
difficult to detect, as the changes introduced during fine-tuning may be triggered at a later date or might 
only manifest under specific conditions, making them appear as normal variations in model behavior. 

 

2.6 Byzantine Attack 
In the context of federated or distributed learning, Byzantine attacks occur when one or more clients in 
the system are compromised and behave maliciously. Clients in distributed  environments train their local 
models on private data. These clients periodically send model updates again, typically gradients or 
parameter changes, to the central server or in peer-to-peer configurations directly to other clients for 
aggregation. In a Byzantine attack, the compromised client(s) sends updates that mislead or contaminate 
the common model which supports many organizations.   

These attacks can be complex due to the variability built into the attack. For instance, the compromised 
clients might only send corrupted updates occasionally to avoid detection, they may also coordinate with 
other malicious clients to amplify the attacks impact when triggered. These attacks are more difficult to 
execute however when they are deployed, they are very difficult to detect and mitigate against. 

Example: 
Consider a federated learning system where three banks (A,B and C) are collaborating to train a model 
that detects fraudulent transactions. If an attacker compromises Bank A , they could send corrupted 
updates that incorrectly classify fraudulent transactions as legitimate to the other Banks as well. This 
could result in a global model that is triggered to not detect fraudulent activities for a specific group. 

Attack Name Ease of 
Execution 
(Internal) 

Ease of 
Execution 
(External) 

Detection 
Difficulty 

Impact Most 
Susceptible 

Configuration 
Fine-Tuning 
Attacks 

Easiest Moderate Medium Medium to High All 

Gradient 
Manipulation 

Easy Moderate High High Federated 

Backdoor 
Attacks 

Moderate Hard Low to Moderate High All 

Byzantine 
Attacks 

Moderate Hard Very High High Federated/ 
Decentralized 
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3 Detection and Mitigation 
To combat model update poisoning, a combination of detection and mitigation strategies is critical. 
Anomaly detection can identify model updates that deviate from expected patterns using statistical or 
machine learning-based techniques. However,  detection devices may not be tuned precisely or be 
sophisticated enough and may cause more challenges such as false positives, i.e., flagging legitimate 
updates as malicious. High rates of false positives can waste resources and reduce the confidence in the 
model’s responses.   

Breach case study 

Finding real world case studies is extremely difficult because there is no mandatory reporting 
requirements. Additionally, the rapid introduction of LLMs is outpacing the ability for the industry to 
develop standardize safeguards or processes that can aid in mitigation.  

One well known incident that could be classified as both data and model poison is the Microsoft Tay 
debacle. Tay was a chatbot deployed by Microsoft on Twitter platform with the expectation that it would 
train in an unsupervised manner in production.   

When the public identified that it could be manipulated to generate inappropriate content more users 
joined in which resulted in an overwhelming flood of bad training data. Since the model was continuously 
learning in an unsupervised mode the poisoned data created a feedback loop. The model adapts to the 
poisoned data, which in turn influences the generation of further outputs that are consistent with the 
poisoned data, reinforcing the biased learning. In short, the model was intentionally manipulated causing 
a dramatic shift in the model's parameters. 

Model Supply Chain 

While not technically a model poisoning exploit the Hugging Face incident is a good example of 
vulnerabilities in AI supply chains. Hugging Face serves as a platform where researchers and developers 
can share and collaborate on pre-trained models and datasets. Over time a number of compromised 
models were uploaded to the site leading to unintended consequences for unsuspecting users who 
downloaded and integrated them into their projects. If a widely used model is compromised, it can have a 
cascading effect, impacting many downstream projects and applications. 

4 Conclusion 
This paper has explored the vulnerabilities in Deep Learning Language Models (DLLMs), with a focus on 
non-federated, federated, and decentralized learning systems. While these models offer significant 
advancements in natural language processing, they also pose substantial security challenges. 

Non-federated learning systems are particularly susceptible to data poisoning of fine-tuning datasets. 
These attacks can severely degrade model performance, introduce biases, and compromise privacy.  

Federated learning systems, which decentralize data storage by keeping it on local devices, enhance 
privacy but are not without their own vulnerabilities. They require a delicate balance between privacy and 
model robustness, this tension makes them vulnerable to  model update poisoning and Byzantine attacks.  

Decentralized configurations, while offering further privacy benefits, bring technology and collaboration 
complexity which further increases the attack surface during the training process. 

In conclusion, while DLLMs hold great potential, the technology is in the rapid adoption phase of its 
lifecycle. This phase can outpace an organization’s ability to manage the technology securely.  It is 
essential to recognize and address the vulnerabilities relative to their training configuration and intended 
use.  
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