
Excerpt from PNSQC 2024 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 1

Vulnerabilities in Deep Learning Language Models
Security Risks and Mitigation in Non-Federated, Federated and Decentralized Training

John Cvetko Bhushan Gupta

John.Cvetko@TEKAsc.com bhushangupta51@gmail.com

Abstract
Deep Learning Language Models (DLLMs), particularly those based on Generative Pre-trained
Transformers (GPT), have significantly advanced the field of natural language processing. As these
models become more integrated into practical applications, they expose new security vulnerabilities and
increase the attack surface for enterprises. Understanding and addressing these vulnerabilities is
essential for ensuring the reliability and confidence in these systems.

This paper examines the vulnerabilities associated with both federated and non-federated training
methods, including data poisoning, model update manipulation. Additionally, we discuss the need for
robust detection and mitigation strategies to address these risks, ensuring the safe and secure
deployment of AI systems in real-world environments.

Biography
John Cvetko

As a Principal at TEK, Mr. Cvetko works with companies and government agencies to improve their
organizations by helping them manage the IT challenges they face. He focuses on applying state of the
art solutions that support business goals and objectives. For the last 12 years he has primarily worked
with state governments assessing and modernizing large enterprise software systems. He has worked
with the state governments of Washington, Oregon, Colorado, North Carolina, North Dakota, and Utah.
He has consulted for firms such as Gartner, Boeing, and MAXIMUS, and earlier in his career he has held
program and systems engineering management positions at Tektronix, PGE/Enron and ASCOM.

Bhushan Gupta

An international speaker and a WebApp security researcher, Mr. Gupta is the principal consultant at
Gupta Consulting, LLC. In WebApp security his research areas are infusing security in SDLC, OWASP
Top10, Risk Analysis and Mitigation, Attack Surface Measurement, and Static and Dynamic Application
Security Analysis. As one of the leaders of Open Web Application Security Project (OWASP) Portland
Chapter, he is dedicated to driving web application security to higher levels and provides training
workshops to corporations and non-profit organizations. He is also an invited speaker and a panelist in
discussions for both application security and agile software development. Mr. Gupta serves as a board
member of Pacific Northwest Software Quality Conference and was the Program Chair for PNSQC2022.
He has also been a member of the Program team for the OWASP Global AppSec Conference 2020

Excerpt from PNSQC 2024 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 2

1 Introduction
To discuss the training vulnerabilities in a Deep Learning Language Model (DLLM), it's important to
understand the text processing pipeline and training process. The pipeline includes three main
components for data processing which are the Input, the Transformer, and the Output stages. These 3
three stages represent the “model” or the brain of the system. The model can be adjusted or tuned to a
specific purpose by the approach and the data utilized in the training .

The training approach is also influenced by the purpose of the Large Language Model (LLM) and the
needs of the users, for example a system designed to provide general use by the public will be much
different than a system shared by multiple companies that are collaborating to create an industry specific
model. To satisfy these needs designers may deploy federated and non-federated training configurations.
Each of these configurations has its strengths and weaknesses relative to security and privacy.
Depending on the training approach taken the systems may be more vulnerable to data manipulation
while others are vulnerable to model manipulation.

This paper will first outline the basic workings of a model, training phases and then the training
configurations before we highlight a few specific attack types based on their training data or corpus and
model refinement.

1.1 Understanding the Processing Pipeline
This section outlines the primary stages of the processing pipeline at a high-level: Input Processing, the
Transformer Stage, and Output Processing. These elements together make up a model that can accept
user input and convert it to machine readable format. This information is then processed utilizing a neural
network capable of keeping all the content in context. Once processed it is converted back to text that is
output to the user.

Input Processing: The first step involves cleaning and preparing raw text data. This includes removing
irrelevant characters, normalizing, and converting the text into a numerical format through a process
called tokenization. The tokenized data is then further prepared for the Transformer by padding the
tokens and masking irrelevant parts of the data. These preprocessing steps are crucial for ensuring that
the data is in a format that allows the transformer to interpret then predict the proper response.

Transformer Stage: At the core of models like ChatGPT is the Transformer stage. The transformer
concept was a breakthrough in the evolution of LLMs. The best way to quickly describe the transformer
stage is through an analogy.

Imagine reading a novel. Each word, sentence, and paragraph provides more details about the plot. As
you read and better understand the context you instinctively focus on key phrases and details, connecting
them to earlier parts of the story to understand the plot as it develops. At the end of each chapter, you
pause to reflect on the plot, piecing together the information and anticipating what lies ahead.

Traditional language models, like Recurrent Neural Networks (RNNs), read and present text word by
word, similar to word prompts being suggested when you are writing a text message. This sequential
processing can remember and connect information from earlier parts of the text message.

Transformers, on the other hand, take a more holistic approach. The transformer sees an entire sentence
and keeps it in context to the paragraph, chapter, and book. It uses an "attention mechanism" to weigh
the importance of each word in relation to all others, allowing it to capture long-range dependencies and
understand the context of each word more fully. This helps the Transformer generate more coherent and
contextually relevant text, making it a powerful tool for language tasks like translation, summarization, and
even creative writing.

Excerpt from PNSQC 2024 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 3

Output Processing: The final stage involves converting the model’s numerical outputs back into human-
readable text. This stage is critical for ensuring the generated output is presented in contextually accurate
sentences.

By understanding these stages, we can better identify where and how DLLMs are vulnerable to attacks,
setting the stage for the subsequent discussion on specific adversarial threats and mitigation strategies.

1.2 Training Phases and Configurations
Training a large language model (LLM) like ChatGPT involves several key phases, beginning with data
preparation and followed by pre-training, fine-tuning, and finally Reinforcement Learning from Human
Feedback (RLHF), see table below. Outlining these phases at a high level will help the reader to
understand how the data curated and condition before using it to train the LLM. This data is specifically
curated for each stage of the training. The refined data is necessary as the models’ capabilities increase
throughout the process. Currently the training of a generative LLM is both an art and science because of
our current understanding of the technology. Achieving the right balance between providing the best data
to a model in manner that ensures the best outcome at a reasonable price is challenging. When balanced
properly, bias, hallucinations, security and privacy can be managed at a level acceptable to the
designers.

Data Preparation: The first phase involves collecting and preparing the data for training. This includes
gathering large datasets from sources like the internet, cleaning the data by removing irrelevant or
erroneous information, and processing it into a format suitable for training. Tasks such as tokenization,
normalization, and data splitting are performed during this phase. Proper data preparation is essential for
training on high-quality data, directly impacting the model’s performance.

Table: Training Phases for Medical Public Query

Training Phase Data Sets Result
Pre-Training Broad Dataset (Wikipedia, books, etc.) Basic Linguistics
Fine Tuning Focused dataset (medical journals, etc.) Fine-tuned knowledge
Reinforcement Learning Human Feedback (Doctors, Nurses

approvals)
Practical knowledge

Pre-Training: After data preparation, the model undergoes pre-training using self-supervised learning.
During this phase, the model is trained on vast amounts of text data to learn grammar, facts, and
reasoning by predicting the next word in a sentence. While pre-training is crucial for building the model’s
foundational knowledge, it is susceptible to attacks that can manipulate the learning process, such as
model poisoning.

Fine-Tuning: Following pre-training, the model enters the fine-tuning stage, a form of supervised
learning. Here, the model is trained on a specific, curated dataset with human-labeled examples, aligning
it with desired behaviors and tasks. Fine-tuning allows the model to specialize in particular domains or
tasks, enhancing its accuracy and relevance. However, this phase is also at risk of fine-tuning attacks,
where an adversary could introduce biases or malicious behaviors into the model by manipulating the
fine-tuning data.

Reinforcement Learning from Human Feedback (RLHF): The final phase involves refining the model’s
responses using human feedback. Humans rank the model’s outputs, and these rankings are used to
fine-tune the model further. RLHF is crucial for aligning the model’s responses with human preferences,
but it also introduces risks if the feedback process is compromised.

Excerpt from PNSQC 2024 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 4

2 Training Configurations: Non-Federated, Federated, and
Decentralized

As mentioned earlier in this paper different training configurations are employed based on the intended
purpose of the LLM. For example, a company may provide a generative LLM as a service to the general
public like ChatGPT while other organizations may want to partner to create a robust common model for
their specific industry. These two use cases have different requirements for privacy, and control that may
be satisfied using a different training configuration. The most common configurations are non-federated,
federated that is centralized and a decentralized or in peer-to- peer configuration.

Non-Federated (Local) Training: In this traditional approach, the data and model are centralized
providing maximum control. While this method simplifies data management and processing, it also makes
the system more vulnerable to traditional data breaches and model inversion or the reverse engineering
of the training data through output of queries.

Federated (Centralized) Learning: Federated learning offers a more privacy-preserving alternative, see
diagram below. In this configuration, data remains on the local devices (clients), and only model updates,
such as gradients are sent to the central server. In machine learning, parameters are the internal settings
of a model, such as weights and biases, that are fine-tuned during training, while gradients are the
calculated values that guide how these parameters should be adjusted to minimize the error and improve
the model's performance.

Updating the central server with only updates reduces the risk of data breaches by keeping the data
decentralized and theoretically more protected. However, it introduces new challenges, such as model
update poisoning, where malicious changes are made during model updates; Byzantine attacks, where
some participants in the system act maliciously; and gradient leakage, which occurs when sensitive
information is unintentionally revealed during the process of combining data from different sources. As
Kairouz et al. (2019) highlight, federated learning introduces a delicate balance between privacy and
model robustness, necessitating ongoing research to address these challenges effectively.

Diagram: Federated Configuration

Client 1

Client 2

Central
Server

Model Updates

Model Updates

Global Model

Global Model

Focused
Data

Model

Excerpt from PNSQC 2024 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 5

Decentralized Learning: A more advanced approach is decentralized or peer-to-peer learning, see
diagram below. In this setup, there is no central server; instead, clients (or nodes) communicate directly
with each other to share model updates and collaboratively build a global model through consensus. This
fully decentralized configuration enhances privacy and reduces the risks associated with a single point of
failure. However, it also presents unique challenges in maintaining the integrity of the training process. As
discussed by Kairouz et al. (2019), decentralized federated learning is particularly susceptible to
Byzantine attacks, where malicious clients may attempt to disrupt the learning process by sending false
or misleading updates. The absence of a central authority complicates the detection and mitigation of
such attacks, making robust strategies essential for the secure deployment of AI systems.

Diagram: Decentralized Configuration

Client 1

Focused
Data

Client 3

Client 2

Model Updates
Global Model

Model Updates
Global Model

Model Updates
Global Model

Excerpt from PNSQC 2024 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 6

 The table below summarizes the strength and weakness of each model for simplicity.

Table: Training Configuration Strengths and Weaknesses

System Type Strengths Weaknesses

Non-Federated
(Centralized)

High efficiency and performance due to
centralized computation and data access.

Easier to implement and manage
compared to distributed systems.

Can leverage powerful centralized
resources for complex tasks.

Single point of failure: Vulnerable to system
outages or attacks on the central server.

Privacy concerns: Data is collected and stored
in a central location, increasing the risk of data
breaches and privacy violations.

Data ownership and control: Users have
limited control over their data, which is stored
and managed by the central entity.

Federated Enhanced privacy: Data remains on local
devices, reducing the risk of data
breaches and privacy violations.

Improved efficiency for distributed data:
Leverages local computational resources,
reducing communication overhead.

Scalability: Can handle large numbers of
devices and data sources effectively.

Communication overhead: Requires frequent
communication between the central server and
local devices, which can be a bottleneck.

Heterogeneity challenges: Different devices
might have varying computational capabilities
and data distributions, affecting model training
and performance.

Potential for bias: Local models can be biased
towards their local data, affecting the overall
model's fairness and generalizability.

Decentralized No single point of failure: Increased
resilience to system outages and attacks
due to distributed architecture.

Enhanced privacy and data ownership:
Data remains entirely under the control of
individual users or nodes.

Increased trust and transparency:
Eliminates the need for a central authority,
promoting trust and transparency among
participants.

Communication and coordination challenges:
Requires efficient communication and
coordination mechanisms between nodes,
which can be complex to implement.

Slower convergence: Reaching consensus and
training models might be slower compared to
centralized systems.

Security risks: Vulnerable to attacks targeting
individual nodes or communication channels.

2.1 Targeted Training Attacks
The training phase lays the groundwork for an LLM's capabilities. Any weaknesses introduced during this
stage can have significant consequences, impacting the model's performance, reliability, and potential for
misuse.

The training process for an LLM is complex and requires massive datasets utilized as source information
for multiple training phases each having multiple iterations for tuning. This creates a long complex chain
of events that allows many points for malicious attacks.

Additionally, the growing popularity of federated and distributed learning with many different entities each
having security limitations in their enterprises introduces further vulnerabilities. The training phase
vulnerabilities can be segmented into two broad categories: data and model poisoning.

Data Poisoning: This type of attack involves the deliberate introduction of malicious or corrupted data
into the training set. The goal is to manipulate the model’s learning process, leading to biased, inaccurate,

Excerpt from PNSQC 2024 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 7

or even harmful predictions. Data poisoning is especially prevalent in scenarios where training data is
sourced from untrusted or crowdsourced locations, making it easier for adversaries to introduce
compromised data without detection.

Model Poisoning: In contrast to data poisoning, model poisoning involves tampering with the model itself
during the training process. Attackers may manipulate the model’s parameters, gradients, or updates,
particularly in federated or decentralized learning environments. This can lead to the model developing
vulnerabilities, biases, or even backdoors that can be exploited later. Model poisoning is insidious
because it directly alters the model's behavior, potentially going unnoticed until the model is deployed.

As Zhang et al. (2020) highlight in their survey on adversarial attacks in natural language processing,
these types of attacks are not only pervasive but also varied in their approach and impact. Understanding
the range of adversarial strategies is crucial for developing defenses that can protect against these
threats.

Together, these attacks pose severe risks to the integrity and trustworthiness of machine learning
models. This is particularly concerning in applications where accuracy and reliability are crucial, such as
in healthcare, finance, or autonomous systems.

2.2 Data Poisoning
Data poisoning is a type of adversarial attack where an adversary intentionally introduces corrupted or
malicious data into the training dataset with the objective of manipulating the model’s learning process.
This can lead to the model making incorrect predictions, introducing biases, or becoming more vulnerable
to subsequent attacks. As illustrated in the table below, various forms of data poisoning attacks differ in
their ease of execution, detection, and impact. For this paper we’ll utilize Stealth Poisoning to
characterize a data manipulation attack.

Table: Characteristics of Targeted Data Attacks

2.3 Stealth Poisoning:
Stealth poisoning involves subtly introducing malicious data into the training set, allowing attackers to
influence the learning process. This type of attack is designed to add insignificant data to a dataset that
blends in seamlessly with the legitimate training data. Cleaning and data validation are important;
however, some amount of noise is desirable to make the model more robust. When deployed in
production the model will inevitably encounter data and learning to manage the noise is a desirable
feature. Datasets that are not sufficiently noisy may allow the model to memorize the dataset causing
overfitting. Overfitting can lead to inaccurate predictions when the model isn’t sufficiently trained to
manage the noisy nature of real-world conditions.

Attack Name Ease of
Execution
(Internal)

Ease of
Execution
(External)

Detection
Difficulty

Impact Most
Susceptible

Configuration
Label Flipping Easiest Easiest Low Low to

Medium
Centralized

Stealth Poisoning Easy Moderate Very High Medium All

Targeted
Poisoning

Moderate Hard Low to
Moderate

High All

Optimization-
Based Poisoning

Hard Hardest Low to
Moderate

High All

Excerpt from PNSQC 2024 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 8

The goal of the stealth attack is to cause the model to make incorrect predictions, introduce biases, or
become more vulnerable to subsequent exploitation. This type of attack is especially common in
scenarios where training data is sourced from untrusted locations.

Example:
An internal or external attacker has access to the training data for a credit scoring model. The attacker
introduces data that falsely indicate high credit scores for individuals who would typically be considered
high-risk. As a result, the model could be manipulated to approve loans for high-risk individuals, leading
to financial losses.

2.4 Detection and Mitigation
Detecting stealth poisoning requires rigorous data validation and anomaly detection techniques. Stealth
poisoning attacks may evade basic checks and depending on the confidence in the source data,
advanced anomaly detection may be warranted. Even the most sophisticated techniques are not without
their challenges for example, patterns in the data may be incorrectly flagged as malicious causing false
positives. Advanced techniques are also costly, time-consuming and resource intensive. Organization
with a high-risk tolerance may accept the risk with the expectation that the fixes can be applied later if and
when inaccuracies are identified in production.

Inaccurate predictions and unexpected behavior of the model in production may be an indication that the
dataset was intentionally corrupted. To mitigate this issue outlier-resistant algorithms can be deployed to
improve the model’s ability to manage noise. This approach to refining the model in this manner is also
costly and erodes the confidence of the users.

Another technique to improve the robustness of the model is to train it using adversarial scenarios. This
approach intentionally exposes the model to subtle changes in the data. By training the model to detect
unusual data it can flag the data for further analysis. Again, these techniques are costly and depending on
the organization’s budget or risk tolerance they may be excluded.

Together, these detection and mitigation strategies form a more sophisticated and layered approach to
defending against data poisoning attack. The treatments help to preserve the reliability and security of the
model during the training phase however they are just a few of the many tools needed to guard against
attackers. Inevitable attackers will improve or develop new methods and more cost and time will be
needed to manage the new threats to source data.

2.5 Most Common Model-Targeted Attacks
Model Update Poisoning is a type of adversarial attack that also targets the model training process.
These attacks are more prevalent in distributed or federated learning environments because the model is
intended to be common. Creating a common model requires multiple parties to contribute to the
refinement of the model. The parties will need to move the model updates from one entity to another as
it’s being updated. These attacks can be targeted towards the global model in the central server or the
models at the client nodes. The adversary looks to manipulate specific components of the model such as
gradients or model parameters.

The attacker’s goal is to corrupt the shared or global model by introducing malicious changes during the
update process. The table below, outlines a number of model-targeted attacks that vary in their ease of
execution, detection, and impact across different configurations. For instance, fine-tuning attacks are the
easiest to execute and have a medium to high impact across all configurations, while Byzantine attacks,
which are harder to detect, pose significant risks in federated and decentralized systems.

Excerpt from PNSQC 2024 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 9

Table: Characteristics of Model-Targeted Attacks

Fine-Tuning Poisoning:
Fine-tuning attacks occur during the fine-tuning phase of the training process; this attack adjusts and
refine the model using the smaller client dataset. In this phase, an attacker can introduce malicious
behaviors, biases, or vulnerabilities into the model by manipulating the data.

For example, an attacker might subtly alter the fine-tuning dataset to alter the model sufficiently to cause
the model to produce skewed or harmful outputs in specific scenarios. Alternatively, the attacker could
embed specific triggers during fine-tuning that cause the model to behave maliciously when those triggers
are encountered in real-world use.

Fine-tuning attacks are particularly dangerous because they can be relatively easy to execute, especially
in environments where the fine-tuning data is not closely monitored. Additionally, these attacks can be
difficult to detect, as the changes introduced during fine-tuning may be triggered at a later date or might
only manifest under specific conditions, making them appear as normal variations in model behavior.

2.6 Byzantine Attack
In the context of federated or distributed learning, Byzantine attacks occur when one or more clients in
the system are compromised and behave maliciously. Clients in distributed environments train their local
models on private data. These clients periodically send model updates again, typically gradients or
parameter changes, to the central server or in peer-to-peer configurations directly to other clients for
aggregation. In a Byzantine attack, the compromised client(s) sends updates that mislead or contaminate
the common model which supports many organizations.

These attacks can be complex due to the variability built into the attack. For instance, the compromised
clients might only send corrupted updates occasionally to avoid detection, they may also coordinate with
other malicious clients to amplify the attacks impact when triggered. These attacks are more difficult to
execute however when they are deployed, they are very difficult to detect and mitigate against.

Example:
Consider a federated learning system where three banks (A,B and C) are collaborating to train a model
that detects fraudulent transactions. If an attacker compromises Bank A , they could send corrupted
updates that incorrectly classify fraudulent transactions as legitimate to the other Banks as well. This
could result in a global model that is triggered to not detect fraudulent activities for a specific group.

Attack Name Ease of
Execution
(Internal)

Ease of
Execution
(External)

Detection
Difficulty

Impact Most
Susceptible

Configuration
Fine-Tuning
Attacks

Easiest Moderate Medium Medium to High All

Gradient
Manipulation

Easy Moderate High High Federated

Backdoor
Attacks

Moderate Hard Low to Moderate High All

Byzantine
Attacks

Moderate Hard Very High High Federated/
Decentralized

Excerpt from PNSQC 2024 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 10

3 Detection and Mitigation
To combat model update poisoning, a combination of detection and mitigation strategies is critical.
Anomaly detection can identify model updates that deviate from expected patterns using statistical or
machine learning-based techniques. However, detection devices may not be tuned precisely or be
sophisticated enough and may cause more challenges such as false positives, i.e., flagging legitimate
updates as malicious. High rates of false positives can waste resources and reduce the confidence in the
model’s responses.

Breach case study

Finding real world case studies is extremely difficult because there is no mandatory reporting
requirements. Additionally, the rapid introduction of LLMs is outpacing the ability for the industry to
develop standardize safeguards or processes that can aid in mitigation.

One well known incident that could be classified as both data and model poison is the Microsoft Tay
debacle. Tay was a chatbot deployed by Microsoft on Twitter platform with the expectation that it would
train in an unsupervised manner in production.

When the public identified that it could be manipulated to generate inappropriate content more users
joined in which resulted in an overwhelming flood of bad training data. Since the model was continuously
learning in an unsupervised mode the poisoned data created a feedback loop. The model adapts to the
poisoned data, which in turn influences the generation of further outputs that are consistent with the
poisoned data, reinforcing the biased learning. In short, the model was intentionally manipulated causing
a dramatic shift in the model's parameters.

Model Supply Chain

While not technically a model poisoning exploit the Hugging Face incident is a good example of
vulnerabilities in AI supply chains. Hugging Face serves as a platform where researchers and developers
can share and collaborate on pre-trained models and datasets. Over time a number of compromised
models were uploaded to the site leading to unintended consequences for unsuspecting users who
downloaded and integrated them into their projects. If a widely used model is compromised, it can have a
cascading effect, impacting many downstream projects and applications.

4 Conclusion
This paper has explored the vulnerabilities in Deep Learning Language Models (DLLMs), with a focus on
non-federated, federated, and decentralized learning systems. While these models offer significant
advancements in natural language processing, they also pose substantial security challenges.

Non-federated learning systems are particularly susceptible to data poisoning of fine-tuning datasets.
These attacks can severely degrade model performance, introduce biases, and compromise privacy.

Federated learning systems, which decentralize data storage by keeping it on local devices, enhance
privacy but are not without their own vulnerabilities. They require a delicate balance between privacy and
model robustness, this tension makes them vulnerable to model update poisoning and Byzantine attacks.

Decentralized configurations, while offering further privacy benefits, bring technology and collaboration
complexity which further increases the attack surface during the training process.

In conclusion, while DLLMs hold great potential, the technology is in the rapid adoption phase of its
lifecycle. This phase can outpace an organization’s ability to manage the technology securely. It is
essential to recognize and address the vulnerabilities relative to their training configuration and intended
use.

Excerpt from PNSQC 2024 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 11

5 References
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017).
Attention is All You Need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (NIPS'17) (pp. 6000-6010). Curran Associates Inc.

Zhang, Z., et al. "Adversarial Attacks on Deep Learning Models in Natural Language Processing: A
Survey." IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 7, 2020, pp. 2450-
2467. Semantic Scholar, https://www.semanticscholar.org/paper/Adversarial-Attacks-on-Deep-Learning-
Models-in-A-Zhang-Sheng/652107ea8161f607e3bdabc89199e9ff2fdfd015.

Wallace, E., Feng, S., Kandpal, N., Singh, S., & Gardner, M. (2019). Universal Adversarial Triggers for
Attacking and Analyzing NLP. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP 2019) (pp. 2153-2162). Association for Computational Linguistics.

Avidan, S., & Butman, M. (2021). Practical Byzantine Fault Tolerance in Federated Learning. In
Proceedings of the 40th IEEE International Conference on Distributed Computing Systems (ICDCS 2021)
(pp. 924-933).

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., ... & Yang, H. (2019).
Advances and Open Problems in Federated Learning. Foundations and Trends® in Machine Learning,
14(1-2), 1-210.

OpenAI, 2024. ChatGPT (Version 4) OpenAI URL: https://www.openai.com/

https://www.semanticscholar.org/paper/Adversarial-Attacks-on-Deep-Learning-Models-in-A-Zhang-Sheng/652107ea8161f607e3bdabc89199e9ff2fdfd015
https://www.semanticscholar.org/paper/Adversarial-Attacks-on-Deep-Learning-Models-in-A-Zhang-Sheng/652107ea8161f607e3bdabc89199e9ff2fdfd015
https://www.semanticscholar.org/paper/Adversarial-Attacks-on-Deep-Learning-Models-in-A-Zhang-Sheng/652107ea8161f607e3bdabc89199e9ff2fdfd015
https://www.openai.com/

	Abstract
	Biography
	1 Introduction
	1.1 Understanding the Processing Pipeline
	1.2 Training Phases and Configurations

	2 Training Configurations: Non-Federated, Federated, and Decentralized
	2.1 Targeted Training Attacks
	2.2 Data Poisoning
	2.3 Stealth Poisoning:
	2.4 Detection and Mitigation
	2.5 Most Common Model-Targeted Attacks
	2.6 Byzantine Attack

	3 Detection and Mitigation
	4 Conclusion
	5 References

